MATH 521A: Abstract Algebra

Preparation for Exam 2

1. Find all solutions to the modular equation $50 x \equiv 20(\bmod 830)$.
2. Determine, with proof, all zero divisors in \mathbb{Z}_{33}. How many are there?
3. Let p be prime. Determine, with proof, how many elements of $\mathbb{Z}_{p^{2}}$ are units.
4. Consider the function $f: \mathbb{Z}_{33} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{11}$ given by $f:[x]_{33} \mapsto\left([x]_{3},[x]_{11}\right)$. Prove or disprove that f is well-defined.
5. Consider the function $f: \mathbb{Z}_{33} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{11}$ given by $f:[x]_{33} \mapsto\left([x]_{3},[x]_{11}\right)$. Prove or disprove that f is a ring isomorphism.
6. Consider the function $f: \mathbb{Z}_{27} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{9}$ given by $f:[x]_{27} \mapsto\left([x]_{3},[x]_{9}\right)$. Prove or disprove that f is well-defined, and a ring isomorphism.
7. Let p be prime, and let $[x],[y] \in \mathbb{Z}_{p}$. Prove that if $[x][y]=[0]$, then $[x]=[0]$ or $[y]=[0]$.
8. Let R have ground set \mathbb{Z} and operations given by:

$$
\forall x, y \in \mathbb{Z}, \quad x \oplus y=x+y-2, \quad x \odot y=2 x+2 y-x y-2 .
$$

Prove that R, with operations \oplus, \odot, is an integral domain.
9. Let R be a (not necessarily commutative) ring with identity and $x, y \in R$. Suppose that neither x nor y is a zero divisor, and that $x y$ is a unit. Prove that x, y are units.
10. For ring R and element $x \in R$, we say that x is silver if $x+x+x+x+x=0_{R}$. Define $T \subseteq R$ to be the set of silver elements of R. Prove that T is a subring of R.
11. Set $R=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Prove that R is a subring of \mathbb{R}, and find its units.
12. Set $R=\{a+b \sqrt{-1}: a, b \in \mathbb{Z}\}$. (We often call $\sqrt{-1}$ by the name i). Prove that R is a subring of \mathbb{C}, and find its units.
13. Let R be the set of 2×2 lower triangular matrices with entries from \mathbb{Q}, i.e. $R=$ $\left\{\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right): a, b, c \in \mathbb{Q}\right\}$. Prove that R is a subring of the ring of 2×2 matrices with entries from \mathbb{Q}.
14. Let R be the ring of 2×2 lower triangular matrices with entries from \mathbb{Q}, i.e. $R=$ $\left\{\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right): a, b, c \in \mathbb{Q}\right\}$. Determine, with proof, all units and zero divisors of R.
15. Let R be the ring of 2×2 matrices with entries from \mathbb{Q}. Define $f: R \rightarrow R$ via $f:\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, a.k.a. the matrix transpose. Prove or disprove that f is a ring isomorphism.

