MATH 521A: Abstract Algebra Preparation for Exam 2

- 1. Find all solutions to the modular equation $50x \equiv 20 \pmod{830}$.
- 2. Determine, with proof, all zero divisors in \mathbb{Z}_{33} . How many are there?
- 3. Let p be prime. Determine, with proof, how many elements of \mathbb{Z}_{p^2} are units.
- 4. Consider the function $f : \mathbb{Z}_{33} \to \mathbb{Z}_3 \times \mathbb{Z}_{11}$ given by $f : [x]_{33} \mapsto ([x]_3, [x]_{11})$. Prove or disprove that f is well-defined.
- 5. Consider the function $f : \mathbb{Z}_{33} \to \mathbb{Z}_3 \times \mathbb{Z}_{11}$ given by $f : [x]_{33} \mapsto ([x]_3, [x]_{11})$. Prove or disprove that f is a ring isomorphism.
- 6. Consider the function $f : \mathbb{Z}_{27} \to \mathbb{Z}_3 \times \mathbb{Z}_9$ given by $f : [x]_{27} \mapsto ([x]_3, [x]_9)$. Prove or disprove that f is well-defined, and a ring isomorphism.
- 7. Let p be prime, and let $[x], [y] \in \mathbb{Z}_p$. Prove that if [x][y] = [0], then [x] = [0] or [y] = [0].
- 8. Let R have ground set \mathbb{Z} and operations given by:

$$\forall x, y \in \mathbb{Z}, \quad x \oplus y = x + y - 2, \quad x \odot y = 2x + 2y - xy - 2.$$

Prove that R, with operations \oplus, \odot , is an integral domain.

- 9. Let R be a (not necessarily commutative) ring with identity and $x, y \in R$. Suppose that neither x nor y is a zero divisor, and that xy is a unit. Prove that x, y are units.
- 10. For ring R and element $x \in R$, we say that x is silver if $x + x + x + x + x = 0_R$. Define $T \subseteq R$ to be the set of silver elements of R. Prove that T is a subring of R.
- 11. Set $R = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$. Prove that R is a subring of \mathbb{R} , and find its units.
- 12. Set $R = \{a + b\sqrt{-1} : a, b \in \mathbb{Z}\}$. (We often call $\sqrt{-1}$ by the name *i*). Prove that R is a subring of \mathbb{C} , and find its units.
- 13. Let R be the set of 2×2 lower triangular matrices with entries from \mathbb{Q} , i.e. $R = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Q} \}$. Prove that R is a subring of the ring of 2×2 matrices with entries from \mathbb{Q} .
- 14. Let R be the ring of 2×2 lower triangular matrices with entries from \mathbb{Q} , i.e. $R = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Q} \}$. Determine, with proof, all units and zero divisors of R.
- 15. Let R be the ring of 2×2 matrices with entries from \mathbb{Q} . Define $f : R \to R$ via $f : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} a & c \\ b & d \end{pmatrix}$, a.k.a. the matrix transpose. Prove or disprove that f is a ring isomorphism.